connect

SWashingon  Towards semantic visual decoding of naturalistic movies with with me

University in St.Louis ] ] . ] __IE:_‘_!.*- [m]

SCHOOL OF MEDICINE high-density diffuse optical tomography :
Mallincrodt Tnctitute Wiete Fehner'*, Morgan Fogarty’, Aahana Bajracharya’, Zachary E. Markow’, Dana Wilhelm?, Jason Trobaugh’, Alexander G. Huth?, Joseph P Culver? E

MI of Radiology "Washington University in St. Louis, St. Louis, Missouri 63130, USA, ?The University of Texas at Austin, Austin, 78712, TX, USA

*Presenting Author email address: f.wiete@wustl.edu

Background Motivation

A
lllumination (In) Detection (Out) Measurement o . . . ] ] o ] . ) .
Optical imaging systems, such as Aphasia affects >100k individuals per year in the US Figure 3. HD-DOT in
functional near-infrared Naturalistic Settings.
spectroscopy (fNIRS) and diffuse e Tishe Wernicke's (Broca'’s '(:Igbg_r[')%%iylgtzﬁm
optical tomography (DQT) Aphasia). (bottom left) and newer
measure the changes in blood _— . Trouble with speaking or wearable HD-DOT
flow of the brain by analyzing the area Temporal .. peaxing (WHD-DOT) systems
? uincion contcios light absorption in the near o writing but not with (bottom right) allow for
T o, ~ P . s understanding. more naturalistic imaging
£ = HoR infrared optical window between a | environment compared
e | source and a detector. / \ (Wernicke’s Aphasia) to MRI.
10  Diffuse Optical tomography (DOT) ] Producing speech . c%%]:;nd . |nab|||ty o receive.and
Wavelength (nm) methods reconstruct spatially Wthdemanding & placessingispeech understand what is bein
E overlapping multi-distance source- Figure 2. Aphasia. Figure from caid J
HD-DOT fMRI detector measurement channels [5]: | | '
into 3-D maps [4]. « Language is encoded in the cortex through language-
« The density of the sources and specific areas and | s
A detectors impaCtS image qua“ty by ¢ V|Sua| S.emant|.C mapS can pOten’[Ia||¥ he|p |dent|fy
v 00 - . o O increasing the field of view (FOV) alternative brain pathways that remain intact after a stroke
Figure 1. High-Density Diffuse Optical Tomography. (A) and spatial resolution. ( ).
Sensitivity profile of measurement channel. (B) Extinction Loaistics of fMRI are NOT
coefficients of hemoglobin [4]. (C-D) VHD-DOT imaging field of HD-DOT allows cortical mapping Personalized language mapping (encoding) & BCI for sgitable for naturalistic
view and position of sources and detectors. (E) HD-DOT allows like fMRI. augmented communication (decoding) could be useful. :
to map visual processing like fMRI [2]. environments.
Experimental Design Repeatability as Precision Measure
A 96 min A Sub 1 Sub 2 Sub 3

AC MOV TEST1 MOV TRAIN1 MOV TEST 2 - MOVTRAIN2 MOV TEST3 MOV TRAIN 3 - MOV TRAIN 4

AC MOV TEST4 MOV TRAIN5 MOV TEST 5 - MOVTRAIN6 MOVTEST6 MOV TRAIN 7 - MOV TRAIN 8

0
()
X
o
AC MOV TEST7 MOV TRAIN9 MOV TEST 8 [JHW MOV TRAIN 10 MOV TEST9 MOV TRAIN 11 [JHWS MOV TRAIN 12 | REST 5
[ Localizer (visual, 10 min) Localizer (auditory, 3min)  [JJl] Movie Training (10 min) [ll] Movie Test (10 min) || REST (optional, 10 min) R L 1
05 /sy s
MOV REST H J A
0.5 W :
B m
@ 1 ()
ﬁ Wz corr(BlockCombjyy, BlockCombj )
. 5%
% where
i::, corr(x,y) = X =) —y)
Figure 4. Experimental Design. (A) Overview of the experimental setup, including three scanning sessions with auditory g ’ 2 x; — )2 2y — )2
(HW: hearing word) and visual (AC: alternating checkerboard) localizers to assess consistency across sessions. (B) Movie T j EEPEEDENE EDL I i » mis the total number of task blocks
. . . . . . . . . . p *  BlockCombj, is the k-th block in the j-th
clips were validated in prior fMRI studies [3] and labeled using semantic categories from WordNet. Example of stimuli for 0.5 o Jrre— o p— B P combination of blocks for comparison
task runs - ST SN S O Sl s B g g7 i D P TSN Ry «  xand y are measurements from two task
_ Jede : : [ o L L 8P A3, O R o Pk e i Epa A o blocks
o ’_" //e/ e = 313 ‘ ,{/;-: e A RN M o W o ,_:m? (“ v - ’ -t NN D L ) d v the i-th t
R - S N N A T *?# Qo g‘ &) ey’ x; and y; are the i-th measuremen
e Ty S L il = o P > S UL ST b*-ﬁﬂ.,‘ BN\ Gy = . X and y are the means of the vectors
Th. . 120 ] f i t ini d t d 90 . t f t t- d t N 3 Th t t' 'E-’ e B = o= - - %’ «  nis the number of measurements
IS gives min ot unique training _a aan i minu _es of testing data (N=3). € testing Figure 5. Repeatability Maps for Localizer Tasks. (A-B) Repeatability maps and distributions for visual and auditory
data consist of 9 unique minutes. localizers. (C) Equation used to calculate repeatability.
A 1 1 ) 11 ”
Sub 1 Sub 2 Sub 3 Figure 6. Presence of “person” category Regressor for “person” category
Explained Subsetd
10° o 1051 : —o 10°T . o Vari II]WI |Il“‘ ” | . Regressor Time Traces
[16 Cligs i E [ 16 zl:gz "‘l. N [:lg c:!ps Aarllance f , . —Sugsetl
9 clips 9 clips \ == nalysis for j YA p - {) /\/_iﬂbiiﬁﬁ
9 3 9 ﬂ/ \ Test Movie Wﬂmﬂﬂﬂ » jﬂ X {ﬂ\\/ bﬂ(}é-bqy\ \& WW 0
S ) $ i - Clips. (A) | | , | . , . |
" ', 60 120 180 240 300 360
! Histograms of “ || || I |||||||| "||| || |||||||| " "” || ||| " Time Points
[
A IE B H EV for 3, 6, and C
1075 . : : : ! 10 = : . : ! 10 — } } ' ! . 171 1)
OVoxecI)\)\?ise E?(ﬁlaine%f)Varia%ge . 0Voxe(l)\}vzise E?(ISIaine?j.GVariaorf:e ' 0Voxecl)\./\fise Eiﬁlaine%%aria?wlge ' a” 9 CI|pS. (B) eanISD for person category

105 Mean & SD for “person” category

Brain maps using Jvear]

abs(min(EV)) as
the threshold.(C)
Effect of
repetition on EV
for Sub 3.(D)
Equation for EV.
The maps

demonstrate high : : : " "
repeatability in D N o . Figure 7. S_emantlc Mapping of the "Person
Threshold: 0.068 Threshold: 0.048 visual areas, with praa =053 o = 05 pas = 04 Category (in Sub 3). (A) A "person” category

U5 o P regressor was created for three subsets of the

[ |STD

log(nVox)

0 1 2 3 4 5
Value %10
Mean/SD for “person” category

’ X
3 ™
.»‘.
4 L
.
oS
SN2 10 L —Imu/sd
Pl )
gy M SATN . - - 84th pctl
N\od , 1 = = 99th pctl
' " I
J ‘\ I
,( » 100 1 1 " (TH, . N " 1 [ 1
0

10 20 30 40 50
Value

log(nVox)

the highest EV in raining d B) A GLM lied
10°F e y e gnxmxk these regions, raining data. ( ). was applied to
- | N where Y is our dataset, n is the number of repetitions m is the number Indicating the g_er_]erate semgntlc maps. (C) M_ean _maPS
of time points, and k is the number of voxels. maximum divided by their standard deviation highlight
7102 - y,,i =1 .. N measured signal in a voxel for each of the N repetitions orediction statistically meaningful areas. (D) Similarity
% 2 cy= %Z?’:lyi average brain response across repetitions accuracy .. measures demonstrate reproducibility of these
=10 » y; — y residual for each repeat . ' maps.
N N achievable by *
o o % ZVar(yi) _NIX : ZVar(yi 5 the encoding VHD-POT allows re_producea!ale
10%] o o o5 ) =1 =1 model. B Subset 1 ¥ Subset 2 Subset 3 [ Overlap mapping of semantic categories.
Voxelwise Explained Variance
Voxelwise Encoding Model Future Directions & Conclusions
A B C O .
-% o Person Category Weights Prediction Accuracy « We demonstrated the feaS|b|I|ty of VHD-DOT for visual
= O . .
E = Participants watched naturalistic movies Semantlc mapplng_
5 O —
g = « VHD-DOT proved reproducibility of semantic category
reg‘g;es%ﬁ‘éirbii‘ii?ﬁ};d _ mapping and feasibility for complex voxelwise encoding
_ to derive responses to _ % . .
l Il\gtl))\gzzv\\ﬁtr: categlories. l Bvrllaelper'iscpg)rgzzs /' \ Yy %mz_ - mOdels fOr Semanth mapplng
X anovers B y /= '/}r?f{" A | Vbl N « This study lays a foundation for visual semantic mapping in
s [N THEDIRNL | (e oo oo ) MWWWWW{WWW\W J.‘.Z// \Qb AR B S N naturalistic environments and applications in aphasia.
wice || 1] | |]]] oomay) W M osma®) g Corr ymed « Future directions include expanding the encoding model and
smcmre| ‘| LTI s | oo o = WWWWMW”WW 5 Figure 8. Voxelwise building towards a decoding model.
text -0.03 -0.06 .
Lnicate H || ‘ ’ ”” | -0.02 -0.01 Category Model Weig Encoding (in Sub 3). (A)

Category labels Category Model Changes in hemoglobin

r 3% Ootmd%m minicate 25 L Extracted Category Weights [1] Bajracharya, A. et al (2023). Precision Functional Mapping of Cortical Activity Using High-Density Diffuse
weights oxygenation e

t"""“‘*""“'_‘- LR XN\ " . Optical Tomography (HD-DOT). https://doi.org/10.1364/boda.2023.jtu4b.15
| towe 2 g e inons [l for the "person” category. [2] Eggebrecht AT, Ferradal SL, Robichaux-Viehoever A, Hassanpour MS, Dehghani JH, Snyder AZ, Hershey

(C) Model prediction T, Culver JP. Mapping distributed brain function and networks with diffuse optical tomography. Nat Photonics

log(Voxel)

| e~ 7 . || IR PR Schematic of the voewise  References and Acknowledgements
120 min 120 min ‘ (\ s cncoding model. (B)

" pc1 2014 Jun; 8(6):448-454
c Xﬁ =y \l, < accuragy. (D) Complex [3] Huth, A. G. et al (2012). A Continuous Semantic Space Describes the Representation of Thousands of
o Ke) semantic maps derived from  opject and Action Categories across the Human Brain. Neuron, 76(6), 1210—1224.
(7)) . Principal Component https://doi.org/10.1016/j.neuron.2012.10.014
-g’ 3 ﬁ — argmlnﬁ{llxﬁ - y”2 + a”ﬁllz} Analygis (PCAF; on the [4] Wheelock, M. D., Culver, J. P., & Eggebrecht, A. T. (2019). High-density diffuse optical tomography for
E a _ imaging human brain function. Review of Scientific Instruments, 90(5). https://doi.org/10.1063/1.5086809
o B = ( xXTX + a I)_l XTy /.( g > W T e g category_ moc!el weight 5] Image courtesy of Cleveland Clinic. © 2022 Cleveland Clinic.
Y AL //' 4 ATNS 7N ) str';‘zmri";'-c'-‘?*,_'f"g matrix, visualized for PC 1 This work was funded by USA NIH grants U0O1EB027005, RO1NS109487, T32EB014855. Drs. Joseph Culver
‘&..é,) ‘ u“‘“\q i pop A" amboo with corresponding and Jason Trobaugh have a financial ownership interest in Esperlmage LLC and may financially benefit if the
P90 I T P99.9 et categories company is successful in marketing its products that are related to this research. The material on this poster
' ' . does not necessarily reflect the views of these funding sources.



	Slide Number 1

