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Experimental Design & Repeatability 

Illumination (In) Detection (Out) Measurement

Figure 1. High-Density Diffuse Optical Tomography. (A) 

Sensitivity profile of measurement channel. (B) Extinction 

coefficients of hemoglobin [4]. (C-D) VHD-DOT imaging field of 

view and position of sources (N=255)  and detectors (N=252). (E) 

HD-DOT allows to map visual processing like fMRI [2]. 
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Motivation

Figure 8. Visual Semantic Encoding. Here the encoding model from Figure 7 was 

applied. (A) Model prediction accuracy. (B) Extracted category weights for the "person" 

category. 
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Visual Semantic Encoding

• Optical imaging systems, such as 
functional near-infrared 

spectroscopy (fNIRS) and diffuse 

optical tomography (DOT), 
measure the changes in blood 

flow of the brain by analyzing the 
light absorption in the near-

infrared optical window between a 

source and a detector. 
• Diffuse optical tomography (DOT) 

methods reconstruct spatially 
overlapping multi-distance source-

detector channels into 3-D maps 

[4].

• The density of the sources and 

detectors impacts image quality by 
increasing the field of view (FOV) 

and spatial resolution.
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Aphasia affects >100k individuals per year in the US

• Expressive Aphasia (Broca’s Aphasia).
• Trouble with speaking or writing but not with 

understanding.

• Receptive Aphasia (Wernicke’s Aphasia). 
• Inability to receive and understand what is being said. B

Figure 2. Semantic 

mapping across 

modalities in MRI. 

Figure from [5]. 

Figure 3. HD-DOT in 

Naturalistic Settings. 

Fiber-based HD-DOT 

(HD-DOT) system 

(bottom left) and newer 

wearable HD-DOT 

(WHD-DOT) systems 

(bottom right) allow for 

more naturalistic imaging 

environment compared 

to MRI.  

• Language is encoded in 
the cortex through 

language-specific areas 

and semantic 
representations.

• Visual semantic maps 
can potentially help 

identify alternative brain 

pathways that remain 
intact after a stroke 

(visual semantics).  

HD-DOT allows cortical mapping 
like fMRI. 

Personalized language mapping (encoding) & BCI for 
augmented communication (decoding) could be useful.

Figure 5. Explainable Variance Analysis for Test Movie Clips. (A) Brain maps using abs(min(EV)) as the threshold. (B) 

Effect of repetition on EV for Sub 3. (C) Histogram for EV for all subjects. (D) The equation for EV. The maps demonstrate 

high repeatability (EV) in visual areas, indicating the maximum prediction accuracy achievable by the encoding model.
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Future Directions & Conclusions
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VHD-DOT allows reproduceable 
mapping of semantic categories. 

Logistics of fMRI are NOT 
suitable for naturalistic 

environments.

Figure 6. Semantic Mapping of the "Person" 

Category (in Sub 3). (A) A "person" category 

regressor was created for three subsets of the 

training data. (B) A GLM was applied to generate 

semantic maps. (C) Mean maps divided by their 

standard deviation highlight statistically 

meaningful areas. (D) Similarity measures 

demonstrate reproducibility of these maps.

• We demonstrated the feasibility of VHD-DOT for visual 
semantic mapping (encoding).

• VHD-DOT showed the reproducibility of semantic category 

mapping and the feasibility of complex voxelwise encoding 
models for semantic mapping.

• This study lays a foundation for visual semantic mapping in 
naturalistic environments and applications in aphasia.

• Future directions include expanding the encoding model and 

building towards a decoding model.
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Explainable Variance of Test Movies

Voxelwise Encoding Model 

𝒀 ∈ 𝑅𝑛 𝑥 𝑚 𝑥 𝑘

where 𝒀 is our dataset, n is the number of repetitions m is the number of 

time points, and k is the number of voxels. 

• 𝒚𝑖 , 𝑖 = 1 …  𝑁 measured signal in a voxel for each of the 𝑁 repetitions

• ഥ𝒚 =
1

𝑁
σ𝑖=1

𝑁 𝒚𝑖 average brain response across repetitions

• 𝒚𝑖 − ഥ𝒚 residual for each repeat
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Figure 4. Experimental Design. (A) Three scanning sessions with auditory (HW: hearing word) and visual (AC: 

alternating checkerboard) localizers were used to assess consistency across sessions [1]. Movie clips were validated in 

prior fMRI studies [3] and labeled using semantic categories from WordNet. (B) Repeatability for visual localizers tasks. 

Figure 7. Voxelwise Encoding 

Model. (A) Model and (B) 

corresponding equation. Ridge 

regression with bootstrapping is 

applied to derive category model 

weights.
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Figure 9. Test-Retest of Visual 

Semantic Encoding Model in Sub 2. 

Training data was split in half, and 

performance was compared to the 

model using all training data. Category 

model weights in PC space. (A) Maps 

and (B) corresponding wordnet graphs. 

(C) Prediction Accuracy of the encoding 

model. 

Decoding Accuracy 𝒄𝒐𝒓(𝒚, 𝒚𝒑𝒓𝒆𝒅)
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Movies were 

labeled with 
1708 nouns 
and verbs

Brain responses 

were recorded with 
VHD-DOT 

A regularized linear 

regression was applied to 
derive responses to 

categories. 
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