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Background
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Optical imaging systems, such as
functional near-infrared
spectroscopy (fNIRS) and diffuse
optical tomography (DOT),
measure the changes in blood
flow of the brain by analyzing the
light absorption in the near-
infrared optical window between a
source and a detector.

Diffuse optical tomography (DOT)
methods reconstruct spatially
overlapping multi-distance source-
detector channels into 3-D maps
[4].

The density of the sources and
detectors impacts image quality by
Increasing the field of view (FOV)
and spatial resolution.
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Figure 1. High-Density Diffuse Optical Tomography. (A)
Sensitivity profile of measurement channel. (B) Extinction
coefficients of hemoglobin [4]. (C-D) VHD-DOT imaging field of
view and position of sources (N=255) and detectors (N=252). (E)
HD-DOT allows to map visual processing like fMRI [2].

HD-DOT allows cortical mapping
like fMRI.

Experimental Design & Repeatability
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Figure 4. Experimental Design. (A) Three scanning sessions with auditory (HW: hearing word) and visual (AC:
alternating checkerboard) localizers were used to assess consistency across sessions [1]. Movie clips were validated In

prior fMRI studies [3] and labeled using semantic categories from WordNet. (B) Repeatability for visual localizers tasks.

Semantic Mapping

augmented communication (decoding) could be useful.

Motivation

Figure 3. HD-DOT in
Naturalistic Settings.
Fiber-based HD-DOT
(HD-DOT) system
(bottom left) and newer
wearable HD-DOT
(WHD-DOT) systems
(bottom right) allow for
more naturalistic imaging
environment compared
to MRI.

Aphasia affects >100k individuals per year in the US

(Broca’'s Aphasia).
* Trouble with speaking or writing but not with
understanding.

(Wernicke's Aphasia).

* Inability to receive and understand what is being said.
Language Is encoded In
the cortex through
language-specific areas
and

Visual semantic maps
can potentially help
identify alternative brain
pathways that remain
Intact after a stroke

( ).

Figure 2. Semantic
mapping across
modalities in MRI.
Figure from [5].
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Personalized language mapping (encoding) & BCI for

Logistics of fMRI are NOT
suitable for naturalistic
environments.

Explainable Variance of Test Movies
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Figure 5. Explainable Variance Analysis for Test Movie Clips. (A) Brain maps using abs(min(EV)) as the threshold. (B)
Effect of repetition on EV for Sub 3. (C) Histogram for EV for all subjects. (D) The equation for EV. The maps demonstrate
high repeatability (EV) in visual areas, indicating the maximum prediction accuracy achievable by the encoding model.
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Figure 8. Visual Semantic Encoding. Here the encoding model from Figure 7 was |

applied. (A) Model prediction accuracy. (B) Extracted category weights for the "person"
category.
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semantic mapping (encoding).
VHD-DOT showed the reproducibility of semantic category

N Y mapping and the feasibility of complex voxelwise encoding
)T N models for semantic mapping.
N \a -

This study lays a foundation for visual semantic mapping in
naturalistic environments and applications in aphasia.
Future directions include expanding the encoding model and
building towards a decoding model.
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Figure 9. Test-Retest of Visual
Semantic Encoding Model in Sub 2.
Training data was split in half, and
performance was compared to the
model using all training data. Category
model weights in PC space. (A) Maps
and (B) corresponding wordnet graphs.
(C) Prediction Accuracy of the encoding
model.



	title
	Slide 1


