
Imaging Science Math Crash Course

When: June 3rd (Mon) – August 2nd (Fri), 2024

Registration: April 12th - May 13th 2024

This math crash course is...

- designed with first-year Imaging Science PhD courses in mind and open to everyone interested in learning math fundamentals in the context of imaging science research
- 5 weeks of Linear algebra and 4 weeks of Calculus
- hybrid (in-person meetups + zoom)
- low time commitments. We will provide self-guided problem sets and lecture-style problem sessions every week.

Tutoring Sessions

- Weekly lessons and tutoring sessions will be available for each course!
- Virtual (zoom) sessions are available based on need

Testimonials:

"The material itself was well-planned, and allowed me to test my understanding with plenty of resources to get help if needed."

"[I] found the last course, Signals & Systems, really helpful because I do not have an engineering background."

"I loved and appreciated the course so much!"

Visit our website for more information !

Questions?
Send us an email at:
imsci.wustl.mathbc@gmail.com

Linear Algebra: Beginner

- Systems of Linear Equations and Vector Equations
- Row Reduction and Echelon Forms
- The Matrix Equation $Ax = b$ and Solution Sets of Linear Systems
- Linear Independence
- Introduction to Linear Transformations
- The Matrix of a Linear Transformation
- Matrix Operations and Inverse of a Matrix
- Vector Spaces and Subspaces
- Null Spaces, Column Spaces, and Linear Transformations
- Linearly Independent Sets; Bases
- Eigenvectors and Eigenvalues

Linear Algebra: Advanced

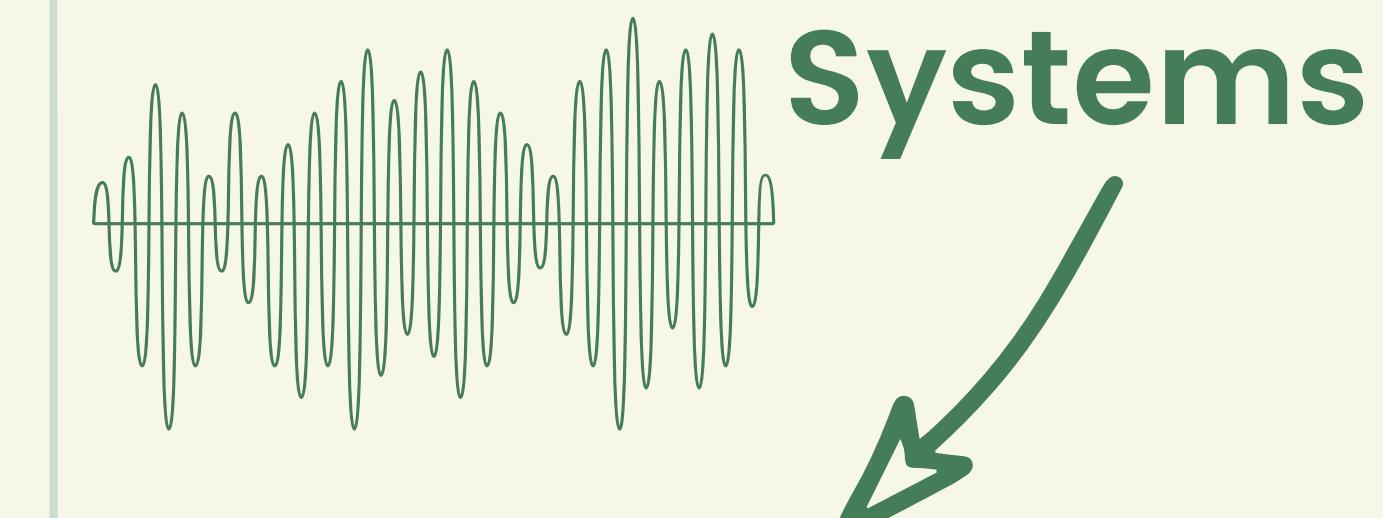
Beginner Linear Algebra Modules, plus:

- Diagonalization
- Eigenvectors and Linear Transformations
- Diagonalization of Symmetric Matrices
- The Singular Value Decomposition
- Principal Component Analysis
- Orthogonal Projections and Inner Product Spaces
- Subspaces and Hyperplanes
- Linear Separability and Support Vector Machines

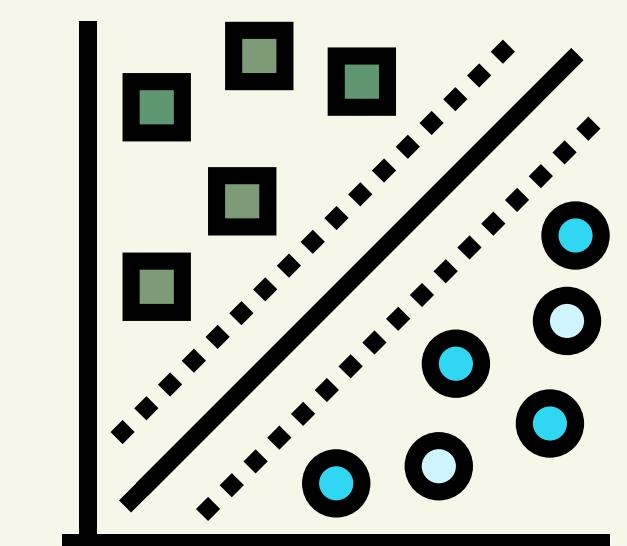
Calculus: Beginner

- Limits Continuity, and Derivative of a Function
- Derivative Rules: Power, Sine/Cosine, Product/Quotient, Chain, and Inverse
- Partial Derivatives and Tangent Planes
- Gradients and Chain Rule
- Integral and Antiderivatives
- Properties of Definite, Double, and Triple Integrals
- Trigonometric Integrals and Trigonometric Substitutions
- Improper Integrals and Probability Densities
- Integration by Parts and Expectation Values

Calculus: Advanced


- Derivative Rules: Power, Sine/Cosine, Product/Quotient, MVT, L'Hopital Rule, Chain and Inverse, Extrema and Concavity
- Integrals, Antiderivatives, Definite, Double, and Triple Integral
- Improper Integral and Probability Densities
- Integration by Parts, Expectation Values, and Higher Moments of Distribution
- Introduction to Delta Functions and Complex Exponentials
- Convolution
- Point Spread Function
- Fourier Transform of Periodic Signals
- Properties of Fourier Transform

Applications in...


Probability

Signals and Systems

Machine Learning

Choose your own time commitment!

- 5 Hours/Week
- 10 Hours/Week
- 15 Hours/Week

Once you register, schedule a 1:1 meeting with tutors & organizers to decide which track works best for you!

Student Talks

Hear from current graduate students and postdoctoral researchers about how linear algebra and calculus are used in their research!

Community Engagement

Meet fellow researchers from across the Danforth and Medical campuses!